Surface alignment, anchoring transitions, optical properties, and topological defects in the nematic phase of thermotropic bent-core liquid crystal A131.
نویسندگان
چکیده
We study optical, structural, and surface anchoring properties of thermotropic nematic bent-core material A131. The focus is on the features associated with orientational order as the material has been reported to exhibit not only the usual uniaxial nematic but also the biaxial nematic phase. We demonstrate that A131 experiences a surface anchoring transition from a perpendicular to tilted alignment when the temperature decreases. The features of the tilted state are consistent with surface-induced birefringence associated with smectic layering near the surface and a molecular tilt that changes along the normal to the substrates. The surface-induced birefringence is reduced to zero by a modest electric field that establishes a uniform uniaxial nematic state. Both refractive and absorptive optical properties of A131 are consistent with the uniaxial order. We found no evidence of the "polycrystalline" biaxial behavior in the cells placed in crossed electric and magnetic fields. We observe stable topological point defects (boojums and hedgehogs) and nonsingular "escaped" disclinations pertinent only to the uniaxial order. Finally, freely suspended films of A131 show uniaxial nematic and smectic textures; a decrease in the film thickness expands the temperature range of stability of smectic textures, supporting the idea of surface-induced smectic layering. Our conclusion is that A131 features only a uniaxial nematic phase and that the apparent biaxiality is caused by subtle surface effects rather than by the bulk biaxial phase.
منابع مشابه
Domain walls and anchoring transitions mimicking nematic biaxiality in the oxadiazole bent-core liquid crystal C7.
We investigate the origin of "secondary disclinations" that were recently described as new evidence of a biaxial nematic phase in an oxadiazole bent-core thermotropic liquid crystal C7. Using an assortment of optical techniques such as polarizing optical microscopy, LC PolScope, and fluorescence confocal polarizing microscopy, we demonstrate that the secondary disclinations represent non-singul...
متن کاملSurface Alignment, Anchoring Transitions, Optical Properties and Topological Defects in Nematic Bent-Core Materials C7 and C12
This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness. We address the status of oxadiazole mesogens, C7 and C12, reported to show the biaxial nematic phase, by exploring material aspects (chemical stability, surface anchoring, optical and dielectric p...
متن کاملMagneto-optical technique for detecting the biaxial nematic phase.
The existence of the elusive biaxial phase has been the subject of much discussion since it was predicted by Freiser in 1970. More recently, there have been numerous attempts to find a thermotropic liquid crystal that exhibits a biaxial phase and with this, conflicting reports about whether such a phase has been positively identified in bent-core liquid crystals. One reason for the discrepancy ...
متن کاملسمتگیری مولکولهای بلور مایع نماتیک در وضعیت دو بعدی و اثر چنگ زدگیهای متناهی و نامتناهی
In this paper, the director distribution is calculated for a nematic liquid crystal, in the cell with different surface anchoring conditions and external fields. The effects of finite and infinite surface anchoring on molecular orientations for one dimensional geometry are discussed. In these situations, the planar alignment is considered. Then, in a two dimensional geometry the planar and homo...
متن کاملTopological binding and elastic interactions of microspheres and fibres in a nematic liquid crystal.
We present a detailed analysis of topological binding and elastic interactions between a long, and micrometer-diameter fiber, and a microsphere in a homogeneously aligned nematic liquid crystal. Both objects are surface treated to produce strong perpendicular anchoring of the nematic liquid crystal. We use the opto-thermal micro-quench of the laser tweezers to produce topological defects with p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2010